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ABSTRACT

Together with the definition of innovative plant and envelope technological solutions for buildings, many
simulation tools (models) have been developed to make the design choices easier. However the definition of
analytical structures able to describe the characteristics of building components installed under real conditions is
still difficult. The paper presents some experiences made by ITC. They have been carried out by using System
Identification techniques to simulate and predict the performances of various components analysed also through
experimental campaigns under real conditions. To this end, parametrical black-box models have been identified
and validated. Apart from the physical and dimensional characteristics of the building, they allow to describe it
through equations that consist of simple polynomials whose variables are represented by inputs and outputs.
The application of the models has allowed to obtain meaningful results, as regards the prediction of the
behaviour of the studied components also with a very limited knowledge of their characteristics. They need
repeated identifications each time the external environment’s dynamics change. But as the analytical structure is
quite simple and they don’t need too long monitoring periods, the identification can be efficaciously automated,
like in the presented cases.
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INTRODUCTION

The paper presents the results of some experiments and analyses carried out on dynamic
envelope systems. In particular, the attention is focused on the survey approach that, together
with an experimental phase, used simulation techniques and prediction analyses through
System Identification procedures. In fact the experimental data were used to identify
analytical models with two different aims: the simulation of the various studied systems
extending the analyses to periods whose experimental data were not available; predictions
about the variables, allowing to optimize the regulation and the control.
The analysed systems were: two typologies of dynamic façade, a passive double-skin
dynamic system, a hybrid opaque dynamic component.
The scheme of Figure 1 (left) shows the characteristics of the two typologies of the tested
dynamic façades: type A with an aluminium external shield, type B with fibre-cement panels.
The double-skin dynamic system (Figure 1, centre) was conceived starting from the idea of
combining the working modes of the dynamic systems with the ones of solar chimneys.
In particular, a dynamic behaviour was expected with different modes that could be selected
through the opening and/or shutting of appropriate shutters located in the external façade, in
addition to the aerator and the shutters in the internal skin. The solar chimney integrated in the



system consisted of the space between a TIM (Transparent Insulation Material) panel in the
lower part of the system and the wall behind it, that represented the massive store element.

   
Figure 1: The studied systems

The hybrid envelope dynamic component (Figure 1, right) basically consisted of a dynamic
multi-layer element in the lower part and an energy management module in the upper one,
that managed the air flows of the system’s air-space in an automated and autonomous way,
thanks to photovoltaic panels. The component’s behaviour was controlled on the basis of
three temperatures (of the internal, external air and of the air in the air-space), acquired by
appropriate sensors and processed by the regulation logic software, implemented on an
electronic board. Depending on the acquired values, the behaviour of the dynamic component
was either natural or forced, thanks to fans and shutters located in the central part of the
management module, where the air from the air-space was conveyed.

THE EXPERIMENTATION

The two typologies of dynamic façade studied were set and tested on one of ITC’s
experimental buildings. In particular the attention was focused on the evaluation of the air
temperature in the internal environments of the building and in the air-space of the façades
under different climatic conditions.
The passive system was tested under real conditions, set on a test-cell (Figure 1, centre). The
analysis was made by comparison with a traditional system, by also assessing the energy
contribution of the double-skin component. The experimental program was adapted to the
results obtained from time to time, focusing the analyses to better understand the dynamics
that developed in the system’s air-space. In fact some changes were introduced in the system
concerning both its dimensions and the materials used, to understand the contribution of
individual elements to the global efficiency of the system.
The thermo-energy analyses on the opaque dynamic component were carried out within a
research that started from the design and the realization of the prototype. After a first
validation in laboratory and on real-scale setups (the out-door test-cells) aimed at optimizing
the system’s performances, ended with a final validation on the optimized systems carried out
in an experimental building (Figure 1, right).

APPLICATION OF THE SYSTEM IDENTIFICATION TECHNIQUES

The research objective was to define a tool without knowing the physical-geometrical
characteristics of the systems, even thought such knowledge was however used to choose the
input variables. The System Identification techniques allow to build mathematical models of
dynamic systems of purely analytical kind (black box), based on measured data. Such
techniques can be applied to a wide variety of mathematical structures, among which the



parametric models and, in particular, the ones defined as ARMAX (Auto Regressive Moving
Average with eXogenous inputs). The analyses carried out for the case studies described refer
to the structure ARX, a simplification of the mentioned ARMAX, because the obtained
results were not considered dissimilar to the ones obtained with the complete structure.
In general a dynamic linear model in the ARX form can be symbolically described as follows:
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The output (y) is partly determined from the input (ui) considered at various (nbi) previous
steps starting from delays (nki) assigned during the identification phase and partly from other
inputs of the system, which are not rendered explicit. Such dependence is defined by
parameters “a” and “b”. The phase identified as “identification” of the analytical model
consists of the research, through appropriate mathematical procedures, of the numerical
values of the parameters that give the best agreement between the model output and the
measured one.
To choose among different tested mathematical structures, a series of analyses are available;
in the cases presented here, the model was chosen on the basis of the best fitting calculated as
the percentage of the output’s variations correctly simulated by the model.
In defining the independent (input) and dependent (output) variables the two problems of
simulation and prediction were distinguished. For what concerns the prediction, the output of
the parametric model could be used as input of a regulation logic, most likely fuzzy logic
particularly suitable for complex systems like the analysed envelope components.

RESULTS

The dynamic façades

In the case of dynamic façades tested on the experimental building, the application of the
System Identification procedures regarded the analysis of the temperature that the air reached
in their air-space, depending on the materials’ characteristics, the façade exposure, etc.
Figure 2 shows the graph of the measured and simulated output related to the identification
period. In the case on the left side of Figure 2 the simulation is made by removing the mean.
The characteristic polynomial identified in the considered case appeared as follows:
Tg(t) = 1.4132·Tg(t-τ) - 0.6011·Tg(t-2τ) + 0.0055·I(t-2τ) + 0.2796·Te(t-2τ) - 0.0655·Te(t-3τ) + 0.2246·Te(t-4τ)

+ 0.0533·Te(t-5τ) - 0.3677·Te(t-6τ)
As it may be noticed, the influence of the first input (solar radiation) to determine the
temperature in the air-space is limited by the low value of its coefficient (0.0055) if compared
with the algebrical sum of the coefficients related to the output and to the second input. In fact
the identification algorithm of the SI tool-box shows a bad correlation between solar radiation
and air-space temperature owing to nocturnal periods, when there is no solar radiation.
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Figure 2: Simulations made considering as previous output the measured (left) and the simulated (right) ones.



For this reason the coefficient linking solar radiation with the temperature rise in the air-space
was recalculated (from 0.0055 to 0.115), on the basis of the data collected by monitoring. In
this way, also for pure simulations, that is when the trend of the temperature in the air-space
wasn’t known a priori (fresh data), appreciable results were obtained (Figure 2, right).
Having identified the analytical model, the simulations were made, by assuming different
conditions of external temperature and solar radiation, finding the corresponding trend of the
temperature in the air-space and its maximum value, as reported in Table 1.

Table 1: Summarizing table of the simulations made through the mathematical model

max solar rad. (W/m2) max ext. temp. (°C) max air-space. temp. Tg (°C)
125.2 9.9 16.7
461.3 12.5 34.8
525.6 10 43.6
659.3 14 56.9

The temperature trend in the air-space related to the solar radiation is an indicator of the
correct behaviour of the dynamic façade system studied; in fact a high air-space temperature
means  good energy contribution in winter, an improvement of indoor comfort through
humidity exhausting, breaking of the thermal wave and exhausting of part of the indoor
sensible and latent heat during the summer.

The passive system

Two models were identified, related to two different kinds of analysis:
- considering consumption as output, two system’s configurations, having different air-

space thickness, were compared;
- considering the air-space temperature as output, a model was defined to predict such

variable, to define a control logic of the devices characteristic of the system, in the
prospect of a possible future automation, that could turn it into an hybrid system.

The identifications result is the following:

Consumption
with air-space
of 12 cm

C(t)= - 0.1442·C(t-τ) + 0.1100·C(t-2τ) + 0.2638·C(t-3τ) + 0.1408·C(t-4τ) - 0.02402·C(t-5τ)
- 0.0006766·I(t-τ) - 0.000258·I(t-2τ) + 0.0003363·I(t-3τ) - 0.02836·Te(t-3τ) +
0.02081·Te(t-4τ) - 0.01329·Te(t-5τ) + 0.02237·Te(t-6τ) - 0.02056·Te(t-7τ)

Consumption
with air-space
of 8 cm

C(t)= 0.6343·C(t-τ) + 0.4646·C(t-2τ) - 0.08599·C(t-3τ) + 0.08887·C(t-4τ) - 0.1609·C(t-5τ) -
- 0.0001716·I(t-τ) - 0.0004236·I(t-2τ) + 0.0005732·I(t-3τ) - 0.01138·Te(t-3τ) +
0.06941·Te(t-4τ) + 0.06315·Te(t-5τ) - 0.05615·Te(t-6τ) + 0.01444·Te(t-7τ)

Air-space
temperature
(gap= 8cm)

Tg(t)= 1,838·Tg(t-τ) - 0.976·Tg(t-2τ) + 0.1088· Tg(t-3τ) + 0.02463 Tg(t-4τ) – 0.009642
Tg(t-5τ) + 0.002495 I(t-τ) – 0.002003 I(t-2τ) + 0.004876 I(t-3τ) – 0.004628 I(t-4τ) –
0.0003243 I(t-5τ) + 0.07869 Te(t-τ) – 0.0711 Te(t-2τ).

In this case the solar radiation data used for the identification were filtered, subtracting the
mean of only the positive values from the series of values, calculated over the whole
experimental period. Such filter procedure was needed in order not to overestimate, during the
identification phase of the model parameters, the solar contribution when the solar radiation
was high, that is when its trend presented high values in very restricted periods (peaks).
The models obtained were validated with “fresh” experimental data, obtaining meaningfully
positive confirmations, that is to say fittings with a fair correspondence between simulated
and measured values.
The simulations were carried out considering some days chosen as “typical days”, whose
characteristics are reported in Table 2.



Table 2: The meteorological characteristics of the “typical days”

typical
day

max ext. temp.
(C°)

sum degree-hours
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−
24

1i
iextrif TT  (C°)

max solar rad.
(W/m2)

total radiant
energy

(Wh/m2)

1 14.0 350.55 742.6 4802

2 10.0 340.87 525.8 1895

3 12.5 297.15 461.3 1725

4 9.9 349.55 125.2 441

5 19.6 230.06 656.9 4251

6 25.4 124.71 684.2 4585

In order to compare the two configurations of the system, the same orders and delays were
used in the identification phase of the analytical models. Table 3 reports the results, that is the
daily energy consumption in the typical days related to the two configurations and the
obtained percentage saving.

Table 3: Results of the simulations on the double-skin passive system

typical day
consum. air-space 12 cm

(kWh/day)
consum. air-space 8 cm

(kWh/day)
100

C

CC
R

12

812 ⋅⋅
−−

==

1 11.90 8.60 27
2 10.63 7.80 26
3 7.37 5.30 28
4 7.42 6.74 9
5 7.81 4.83 38
6 6.00 4.03 32

It’s evident from the table that the configuration with a less thick air-space presents lower
consumption, in every climatic condition. The solar captation efficiency could then be
improved both with the passive operation of the system, and through appropriate mechanical
ventilation devices or an automatic management of the components (screening elements,
shutters for the communication between indoor and outdoor environments, ...). Such
automation could take place by using in the regulation logic the outputs of the prediction
model of the air-space temperature trend.
The comparison between the first three typical days and the fourth points out how
fundamental the solar radiation is to trigger the dynamic phenomena of the system,
underlining the importance of the design choices, in this case the air-space thickness. In fact
with very low solar radiation, the system shows a similar behaviour in the two configurations;
the consumption was in fact determined nearly only by the static insulation, that is the same in
the two cases. For what concerns the last two typical days, it must be specified that they are
characteristic of climatic conditions rather far from the ones used for the models’
identification, and the results must be therefore carefully considered. In fact System
Identification techniques allow, experimental data series of adequate length having been
acquired, to identify and simulate the system rather quickly, allowing several comparisons.
On the other hand, as parameters are purely analytical, the system physical nature must be
introduced with a particular care, in particular during the identification phase (as described
above) and results must be read with a critical eye, without neglecting the characteristics of
the analysed system.



The opaque dynamic system

The results of two simulations have been compared, considering as output the energy
consumption needed to keep the internal temperature at 20°C in the test cells with the
innovative dynamic component and with the reference one.
The objectives of the application of the ARX parametric model were:
- the prediction of the energy consumption in the two cells;
- the quantification of the expected energy saving.
The result of the identification in the two cases, innovative dynamic component (1) and
reference component (2) is the following:

1)C(t)= 0.0174·C(t-τ) + 0.1876·C(t-2τ) + 0.2252·C(t-3τ) - 0.0067·Te(t-2τ) - 0.9649·10-3·I(t-τ) +
0.3316·10-3·I(t-2τ) + 0.2406·I(t-3τ)

2) C(t)= 0.0307·C(t-τ) + 0.3124·C(t-2τ) + 0.25·C(t-3τ) - 0.0056·Te(t-3τ) + 0.0012·Te(t-4τ) + - 0.0077·Te(t-5τ) +
0.0037·Te(t-6τ) - 0.1120·10-3·I(t-3τ)

Once the model was identified, a series of simulations were carried out, with the data of the
typical days before mentioned (Table 2). By applying the identified model to the two
components, parameter R was obtained, as index of the energy saving that could be obtained
with the innovative system compared with the reference one. Table 4 reports the results.

Table 4: The obtained results.

Typical day 1 2 3 4 5 6
R (%) 46 36 35 31 44 47

The attainable energy saving is proportional to the solar radiation; in fact in the first three
typical days an energy saving of about 35% up to 46% was estimated; in the 4th day with a
very low solar radiation, which does not allow the characteristic dynamics of the tested
component trigger, the obtainable energy saving is lower.
The application of the model, carried out considering the 1st, 5th and 6th typical days, has
instead underlined that the energy saving of the system does not seem to depend in a
meaningful way on the external temperature.
The analysis made through the application of the mathematical model confirmed what
resulted from the experimental tests, that is a meaningful energy contribution of the studied
system even under not particularly meaningful conditions of solar radiation. In fact from the
experimental data a 40% saving in terms of energy contribution was obtained, a result which
is close to the one calculated through the models.

CONCLUSIONS

Firstly, it must be underlined how System Identification techniques can contribute in
analysing complex systems like the envelope components described without having to
formalise an “exact” physical-technical description of the energy flows that develop thanks to
the operation of the dynamic systems itself.
Furthermore, there is the chance to use the identified analytical systems to make predictions,
to be combined with regulation fuzzy logic to control the components’ operation. The
analytical model would therefore be periodically identified as the data related to the variables
chosen as input are collected.
If the system presents particularly complicated nonlinearities, that can be neither schematized
with the analysed dynamic systems nor formalized from the physical point of view, other
kinds of parametric models have to be considered. Among these models, Artificial Neural
Networks (ANN) could be a solution, as more structured, self-learning analytical black-box
models.


